Separating Beads and Cells in Multi-channel Microfluidic Devices Using Dielectrophoresis and Laminar Flow
نویسندگان
چکیده
Microfluidic devices have advanced cell studies by providing a dynamic fluidic environment on the scale of the cell for studying, manipulating, sorting and counting cells. However, manipulating the cell within the fluidic domain remains a challenge and requires complicated fabrication protocols for forming valves and electrodes, or demands specialty equipment like optical tweezers. Here, we demonstrate that conventional printed circuit boards (PCB) can be used for the non-contact manipulation of cells by employing dielectrophoresis (DEP) for bead and cell manipulation in laminar flow fields for bioactuation, and for cell and bead separation in multichannel microfluidic devices. First, we present the protocol for assembling the DEP electrodes and microfluidic devices, and preparing the cells for DEP. Then, we characterize the DEP operation with polystyrene beads. Lastly, we show representative results of bead and cell separation in a multichannel microfluidic device. In summary, DEP is an effective method for manipulating particles (beads or cells) within microfluidic devices.
منابع مشابه
Dielectrophoresis (DEP) Based Microfluidic Particle Separator
This report introduces a microfluidic system for manipulation and separation of micron-sized particles based on the combined use of negative dielectrophoresis (DEP) and hydrodynamic forces. A 2-D micro-electrode structure has been constructed on the bottom surface on glass wafer and driven with high-frequency AC voltage to generate dielectrophoretic gates. Depending on the relative strengths of...
متن کاملA 3-D microelectrode system for dielectrophoretic manipulation of microparticles
This paper presents a microfluidic system for manipulation and separation of micron-sized particles based on the combined use of negative dielectrophoresis (DEP) and hydrodynamic forces. A 3-D microelectrode structure (so called paired electrode array) are constructed face to face on the top and bottom sides of the microchannel and driven with highfrequency AC voltage to generate dielectrophore...
متن کاملMicrofluidic mixing using contactless dielectrophoresis.
The first experimental evidence of mixing enhancement in a microfluidic system using contactless dielectrophoresis (cDEP) is presented in this work. Pressure-driven flow of deionized water containing 0.5 μm beads was mixed in various chamber geometries by imposing a dielectrophoresis (DEP) force on the beads. In cDEP the electrodes are not in direct contact with the fluid sample but are instead...
متن کاملMicrofluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis.
This paper presents a poly(dimethyl siloxane) (PDMS) polymer microfluidic device using alternating current (ac) dielectrophoresis (DEP) for separating live cells from interfering particles of similar sizes by their polarizabilities under continuous flow and for characterizing DEP behaviors of cells in stagnant flow. The ac-DEP force is generated by three-dimensional (3D) conducting PDMS composi...
متن کاملOff-chip passivated-electrode, insulator-based dielectrophoresis (OπDEP)
In this study, we report the first off-chip passivated-electrode, insulator-based dielectrophoresis microchip (OπDEP). This technique combines the sensitivity of electrode-based dielectrophoresis (eDEP) with the high-throughput and inexpensive device characteristics of insulator-based dielectrophoresis (iDEP). The device is composed of a permanent, reusable set of electrodes and a disposable, p...
متن کامل